Respuesta :
Answer :
- 8 meters .
⠀
Explanation :
- The volume of the cylinder is 50π cubic meters.
- The cylinder has radius 2.5 meters.
⠀
To Find :
- The height of the cylinder.
⠀
Solution :
⠀
We know,
[tex]{ \longrightarrow\qquad \bf\pi {r}^{2}h = \bf{Volume_{(cylinder) } }}[/tex]
⠀
Where,
- r is the radius of the cylinder.
- h is the height of the cylinder.
⠀
Now, Substituting the values :
[tex]{ \longrightarrow\qquad \sf\pi \times {(2.5)}^{2} \times h = {50 \pi } }[/tex]
[tex]{ \longrightarrow\qquad \sf\pi \times 6.25 \times h = {50 \pi } }[/tex]
⠀
Cancelling π from both sides :
[tex]{ \longrightarrow\qquad \sf \cancel\pi \times 6.25 \times h = {50 \: \cancel \pi } }[/tex]
[tex]{ \longrightarrow\qquad \sf 6.25 \times h = {50 } }[/tex]
[tex]{ \longrightarrow\qquad \sf h = { \dfrac{50}{6.25} } }[/tex]
[tex]{ \longrightarrow\qquad {\pmb {\bf{h = {8 } }}}}[/tex]
⠀
Therefore,
- The height of the cylinder is 8 meters .